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Abstract—We introduce a new algorithm to identify multiple
target concepts when data are represented by multiple instances.
A multiple instance data sample is characterized by a bag that
contains multiple feature vectors, or instances. Each bag is labeled
as either positive or negative. However, the labels of the instances
within each bag are unknown. A bag is labeled as positive if and
only if at least one of its instances is positive and negative if
and only if all of its instances are negative. First, we define
a fuzzy Multi-target concept Diverse Density (MDD) metric.
The MDD is maximized when the target concepts correspond
to dense regions in the feature space with maximal correlation
to instances from positive samples, and minimal correlation to
instances from negative samples. Then, we develop an iterative
algorithm to optimize the MDD and identify K target concepts
simultaneously. The proposed algorithm, called Fuzzy Clustering
of Multiple Instance data (FCMI), is tested and validated by using
it to analyze data of buried landmines collected using a ground
penetrating radar sensor. We show that the FCMI algorithm
can identify distinct target concepts that correspond to mines
of different types buried at different depths. We also show that
FCMI can be used to label individual instances within each bag.

I. INTRODUCTION

Standard machine learning problems characterize an indi-
vidual data sample by a single representative feature vector.
For many applications, such as drug activity prediction [1] and
landmine detection [2], each individual data sample may be
represented by multiple features, each of which has ambiguous
label. Dietterich et al. [1] proposed the Multiple Instance
Learning (MIL) framework for identifying and modeling such
problems. Under this framework, each data sample is repre-
sented by one class-labeled “bag,” that contains an arbitrary
number of unlabeled “instances”, each of which is a single
feature vector in the feature space. The machine learning task
within the MIL framework consists of identifying bags, along
with their subset of instances, that can be used to learn a
classifier to label new bags.

To illustrate the need for MIL, we consider the application
of landmine detection using ground penetrating radar (GPR).
The GPR sensor is mounted on a vehicle and collects 3-dim
data as the vehicle moves. The first 2 dimensions (down-track
and cross-track) refer to the spatial location on the ground
while the 3rd dimension refers to the depth. Typically, in
labeled training data, the spatial location is known, but the
depth is not. To illustrate this data, in figure 1 we display
the GPR signatures of the same mine buried at 3 in deep
in two geographically different sites. We only show a 2-D
view (down-track, depth) of the alarms. First, we note that the
actual target signature does not extend over all depth values.
Thus, extracting one global feature vector from the alarm
may not discriminate between mines and clutter effectively. To

overcome this limitation, multiple features should be extracted
from small windows at different depths [3], [4]. For instance,
in figure 1 we show 8 windows (typically, more overlapping
windows are used). The main challenge in developing a
classifier for this application is the selection of the appropriate
depth for training. For instance, knowing the burial depth (3in)
in figure 1 is not sufficient to identify the best window for
training. In addition to soil properties, the true signature depth
depends on other factors such as mine type and environmental
conditions. In figure 2 we display the GPR signature of a large
mine and a small mine. As it can be seen, for the large target,
the signature can extend over 3 or 4 consecutive windows while
the signature of a small window does not extend beyond one
window. In Section (IV), we will show that using an MIL
approach, each alarm would be represented by a bag of features
extracted from multiple depths. Within each bag, some features
would correspond to the mine signature while other features
would correspond to background. The label of each instance
is not known.

Other applications where the MIL framework has proved
to be effective include automated image annotation [5], text
document classification [6], speaker identification [7], and
many others [8]

(a)Target at site 1 (b) Target at site 2

Fig. 1. Depth of target signature depends on the soil properties of the site.
The same mine type is buried at 3in deep in both sites.

Since its formal introduction, MIL research has focused on
supervised learning. Existing methods typically rely on two
main approaches [8]. The first one concatenates features from
all instances of a bag into one feature vector and utilizes highly
sparse learning algorithms to learn relevant features/instances
[9], [1], [10]. In the second approach, first a collection of
prototypes is identified. Then, using these prototypes, each bag
is mapped to a point in a new feature space and conventional



(a) Large target (b) Small target

Fig. 2. Size of target signature depends on the target type

classification algorithms are used [11], [12], [13].

In this paper, we focus on unsupervised learning for
multiple instance data. Our approach, called Fuzzy Clustering
of Multiple Instance data (FCMI), strives to identify dense re-
gions in the feature space with maximal correlation to instances
from positive samples, and minimal correlation to instances
from negative samples. The proposed FCMI algorithm uses a
fuzzy clustering approach [14] to extend the Diverse Density
model [9] to identify multiple target concepts simultaneously.

The organization of the rest of this paper is as follows.
In Section II, we review related work and highlight the need
for our approach. In Section III, we introduce the objective
function of the FCMI and derive the necessary conditions to
optimize it. In Section IV, we report experimental results and
we conclude in Section V.

II. RELATED WORK

Initial contemplation of the need to represent data samples
with more than a single feature vector can be traced back to (at
the latest) two major applications: the need to predict bonding
activity in drug design [15], and the problem of handwritten
digit recognition [16]. To the best of our knowledge, Diet-
terich, et. al [1] were the first to formalize the definition and
requirements of the traditional bag-instance Multiple Instance
Learning framework. As a solution, they proposed a simple
algorithm, called the Axis-Parallel Rectangles (APR). The
APR constructs a set of boundaries in the problem feature
space that enclose at least one instance from every positive
sample in a training dataset, while excluding as many instances
from negative data samples as is possible.

The next major step in MIL research was the formulation
of the Diverse Density (DD) approach [9]. In [9], the author
defines the Diverse Density metric which combines the cu-
mulative probability that the positive bags are correlated with
a given point of interest, and the cumulative probability that
negative bags are not correlated with it. The DD algorithm
seeks to identify the point of interest that maximizes the
DD metric. This point is called target concept. The DD
algorithm spurred several direct variations designed to im-
prove performance or convergence efficiency. For example, the
EM-DD algorithm [10] is a variation where an Expectation-
Maximization algorithm is used to optimize the DD metric

and identify the target concept. Another research direction
has used the DD metric to analyze the relationship between
regions of the feature space and bags (collectively or indi-
vidually) and identify multiple target concepts. The multiple
concepts are needed to capture the within-class variations.
The learned concepts are then used to perform feature space
mapping (similar to kernal space transformation) to convert
the multiple instance features to single-vector features, upon
which conventional learning methods can be applied. Examples
of such methods include DD-SVM [11] and MILES [12].
The above approaches learn the multiple concepts sequentially.
First, they repetitively optimize the single concept DD metric
using different initialization. Then, a validity measure is used
to identify meaningful and diverse target concepts.

Multiple target concept learning in multiple instance data
can be viewed as a clustering problem. Within the clustering
community, it is well-known that extracting one cluster at a
time is not effective. In fact, using this approach, only points
within the cluster of interest will be considered inliers. Points
in other clusters will be treated as outliers. Thus, when the
expected number of clusters is larger than two, even very
robust algorithms will break down. A more common practice is
to define and optimize an objective function that seeks multiple
clusters simultaneously. The K-Means [17] and the EM [18]
algorithms fall into this category. Moreover, fuzzy objective
functions [14], [19], [20] that allow data samples to belong to
multiple clusters with various membership degrees has proved
to be more reliable.

In the following, we use fuzzy clustering concepts to define
a Multi-target concept Diverse Density (MDD) metric. We
show that multiple concepts can be identified simultaneously
by optimizing the proposed MDD metric.

III. FUZZY CLUSTERING OF MULTIPLE INSTANCE DATA

Let B = {B1, · · · , Bn, · · · , BN} represent the set of data
samples. Each bag, Bn = {bn1, · · · , bni, · · · , bnI}, has I in-
stances1 and each instance, bni = {bni1, · · · , bnif , · · · , bniF },
is an F -dimensional feature vector. In MIL, a bag is labeled
as positive (class of interest), B+, if and only if at least one
of its instances is positive. Similarly, a bag is labeled negative,
B−, if and only if all of its instances are negative. We assume
that our data has Npos positive bags and Nneg negative bags
such that Npos+Nneg=N . Let B+ = {B+

1 , · · · , B
+
Npos
} and

B− = {B−1 , · · · , B
−
Nneg
} denote the subsets of positive and

negative bags respectively.

In MIL, each object is represented by multiple instances
and no information about the relevance of each feature is
unknown. Typically, only one or a few instances are relevant.
Thus, this type of data has an additional ambiguity dimension
making it more appropriate to analyze with a fuzzy approach
as illustrated in figure 3. In this figure, we assume that the
data have two true target concepts with centers marked as TC1

and TC2. We display two bags that can belong to either target
concept. The first bag, B1 has five instances {a, b, c, d, e} and
one of its instances, a, is equally close to TC1 and TC2.
This is the same scenario encountered in clustering traditional
data. Another scenario, that is unique to MIL data, and that

1It is not required that all bags have the same number of instances. Here,
we assume it is the case only to simplify notation.



requires fuzzy assignment is illustrated with a second bag,
B2 = {A,B,C,D,E}. In this case, one instance, A, is close
to TC1 while a different instance, B of the same bag is close
to TC2. In other words, the features that make B2 similar to
one target concept are different from the features that make the
same bag similar to a different target concept. The proposed
Fuzzy Clustering of Multiple Instance Data (FCMI) algorithm
is designed to seek multiple target concepts simultaneously
using fuzzy membership assignment of bags to all target
concepts to address both of the above scenarios.

Fig. 3. Two cases that require fuzzy assignment of a bag to multiple
target concepts. The first bag, B1 = {a, b, c, d, e} has one instance, a,
that is close to both target concepts TC1 and TC2. The second bag
B2 = {A,B,C,D,E} has one instance, A, that is close to TC1 and another
instance, B, that is close to TC2.

The objective of the FCMI algorithm is to identify K target
concepts T = {t1, · · · , tk, · · · , tK}, that describe regions in
the feature space that include as many positive instances as
possible and as few negative instances as possible2. Using a
fuzzy approach, we assume that each bag, Bn, belongs to each
target concept tk with a membership ukn such that:

ukn ∈ [0, 1], and
K∑

k=1

ukn = 1. (1)

Let U=[ukn] for k = 1, · · · , T and n = 1, · · · , N . We define
the fuzzy Multi-target concept Diverse Density (MDD) metric
as

MDD(T,U) =

N∏
n=1

K∏
k=1

(Pr(tk|Bn))
um
kn . (2)

In (2), m is a fuzzifier that controls the fuzziness of the
partition as in the FCM [14]. The MDD in (2) is maximized
when the T target concepts correspond to points in the in-
stances feature space such that each target is close to as many
instances from positive bags as possible and far from as many
instances from negative bags as possible (refer to (10) for the

2Recall that we only know if a bag is positive or negative. Labels at the
instance level are not available.

definition of Pr(tk|Bn)). The proposed FCMI algorithm seeks
the optimal (T,U) that maximize the MDD in (2).

Instead of maximizing (2), we minimize its negative log-
likelihhood:

J(T,U) = −log(MDD(T,U))

=

N∑
n=1

K∑
k=1

umkn{−log(Pr(tk|Bn))} (3)

subject to the membership constraints in (1).

To minimize (3) with respect to U, we apply Lagrange
multipliers and obtain

J(T,U,Λ) =

N∑
n=1

K∑
k=1

umkn{−log(Pr(tk|Bn))}

−
N∑

n=1

λn
( K∑
k=1

ukn − 1
)

(4)

Assuming that the partial densities (Pr(tk|Bn)), n=1, · · · , N
and the columns of U are independent of each other, we
can reduce (4) to the following N independent minimization
problems:

Jn(T,Un, λn) =

K∑
k=1

umkn{−log(Pr(tk|Bn))}

− λn
( K∑
k=1

ukn − 1
)
, n = 1, · · · , N. (5)

Next, we fix T and set the gradient of Jn to zero, we obtain

∂J

uqn
= mum−1qn log(Pr(tq|Bn))− λ = 0 (6)

and
∂Jn
λn

=

K∑
k=1

ukn − 1 = 0 (7)

Solving (6) for u leads to:

uqn =

[
λ

m
× 1

−log(Pr(tq|Bn)

] 1
m−1

(8)

Substituting (8) back into (7), we obtain

uqn =
−log(Pr(tq|Bn))

1/(1−m)∑K
k=1−log(Pr(tk|Bn))1/(1−m)

(9)

To optimize Jn with respect to the target concepts T, we
first need to define the probability of a bag of instances. Recall
that a bag is positive if and only if at least one of its instances
is positive and is negative if and only if all of its instances
are negative. In this paper, we use the NOISY-OR model [9],
[21]:

Pr(tk|Bn)=

{
1−
∏I

i=1(1−Pr(bni∈tk)) if label(Bn)=1∏I
i=1(1−Pr(bni∈tk)) if label(Bn)=0

(10)
where label(Bn)=1 for positive bags (or B+

n ) , and
label(Bn)=0 for negative bags (or B−n ). In (10), Pr(bni ∈ tk)



can be regarded as the similarity of instance bni to target
concept tk. Assuming that each tk is characterized by a
representative feature vector (e.g. centroid), ck, we let

Pr(bni ∈ tk) = e−
(∑J

j=1 skj(bnij−ckj)
2
)

(11)

In (11), sk is a scaling parameter that weights the role individ-
ual features play in defining the overall similarity [9]. Using
(11), finding the optimal target concepts reduces to finding
their optimal centers ck and scales sk for k = 1, · · · ,K. Thus,
we need to solve

∂J

∂ck
= −

N∑
n=1

umkn
Pr(tk|Bn)

× ∂Pr(tk|Bn)

∂ck
= 0, (12)

and

∂J

∂sk
= −

N∑
n=1

umkn
Pr(tk|Bn)

× ∂Pr(tk|Bn)

∂sk
= 0. (13)

Since the definition of Pr(tk|Bn) depends on whether Bn is
positive or neagtive bag, we rewrite (12) and (13) as

∂J

∂ck
= −

N+∑
n=1

umkn
Pr(tk|B+

n )
× ∂Pr(tk|B+

n )

∂ck

−
N−∑
n=1

umkn
Pr(tk|B−n )

× ∂Pr(tk|B−n )

∂ck
(14)

and

∂J

∂sk
= −

N+∑
n=1

umkn
Pr(tk|B+

n )
× ∂Pr(tk|B+

n )

∂sk

−
N−∑
n=1

umkn
Pr(tk|B−n )

× ∂Pr(tk|B−n )

∂sk
(15)

Using (10), it can be shown that

∂Pr(tk|B+
n )

∂ck
=

{
I∑

i=1

1

1− Pr(b+ni ∈ tk)
× ∂Pr(b+ni ∈ tk)

∂ck

}

×
I∏

i=1

(1− Pr(b+ni ∈ tk)) (16)

and

∂Pr(tk|B+
n )

∂sk
= −

{
I∑

i=1

1

1− Pr(b−ni ∈ tk)
× ∂Pr(b−ni ∈ tk)

∂ck

}

×
I∏

i=1

(1− Pr(b−ni ∈ tk)) (17)

Similar equations can be derived for ∂Pr(tk|B−
n )

∂sk
by substituting

skfor ck in (16) and (17). Using (11), the partial probabilities
in (16) and (17) (and the equivalent equations for the scale)
can be computed using

∂Pr(Bni∈tk)
∂ckf

= 2(Bnif − ckf )s2kfe−
∑F

j=1 skj(bnij−ckj)
2

(18)

and
∂Pr(Bni∈tk)

∂skf
= 2skf (Bnif−ckf )2e−

∑F
j=1 skj(bnij−ckj)

2

(19)

Equations (12) and (13) have no closed-form solution.
Instead, we use approximate solutions based on an iterative
line search approach as in [9]. The resulting FCMI algorithm
is outlined below.

Algorithm 1 The FCMI Algorithm
Inputs: B+ and B−: the sets of + and - bags.

K: the number of target concepts.
Outputs: C: Centers of the K target concepts.

S: Scales of the K target concepts.
U: Membership of all bags in all target concepts.

Initialize ck and sk for k = 1, · · · ,K
repeat

Update ukn using (9).
Update C and S by performing few iterations of a line
search algorithm that minimizes (12) and (13).

until centers do not change significatively or number of
iterations is exceeded
return C, S, U

IV. EXPERIMENTAL RESULTS

The proposed FCMI algorithm was applied to analyze
data of buried landmines collected using a Ground Penetrating
Radar (GPR) sensor. The data was collected using a NIITEK
vehicle-mounted GPR system [22] from outdoor test lanes
at two different locations. The first location was a temperate
region with significant rainfall, whereas the second collection
was a desert region. The lanes in both locations are simulated
roads with known mine locations. All mines are Anti-Tank
(AT) mines that can be classified into 2 categories: anti-tank
metal (ATM) and anti-tank with low metal content (ATLM).
All mines are buried from 0” to 8” under the surface. Multiple
data collections were performed at each site at different dates
resulting in a large and diverse collection of mine and false
alarm signatures. False alarms arise as a result of radar signals
that present a mine-like character. Such signals are generally
said to be a result of clutter. Each sample, or “alarm,” in
the dataset has a corresponding datacube with dimensions
representing the depth (500 depth bins), down-track (15 frames
or scans), and cross-track (15 channels). Using the ground
truth, each sample is labeled as mine or clutter. The true depth
location is unknown. For our experiment, we use a subset of
the data that has 400 mine samples and 400 clutter samples.

Each alarm is divided into 15 overlapping windows along
the depth. From each window (50 depths x 15 scans x 15
channels) we extract Edge Histogram Descriptors (EHD) [4].
We extract a 35-dim EHD feature from the (depth,down-track)
dimensions at the central channel and another 35-dim EHD
feature from the (depth, cross-track) dimensions at the central
scan. The 2 EHDs are concatenated to form a 70-dim feature
vector. To fit this data into the MIL framework, each alarm
is represented by a bag of 15 instances where each instance
is represented by a 70-dim feature vector. Each bag is labeled



as positive (mine) or negative (clutter). Labels at the instance
level are not available. We only know that a positive bag has
one or more instances that exhibit the signature of a mine.

The proposed FCMI algorithm assumes that the number
of target concepts is given. In our experiment, we assume that
K=3. We initialize the centers of the target concepts using the
following heuristic. First, using all instances from all positive
bags, we select several candidate centers that cover most of
the instance feature space. These candidates correspond to
instances that are as distant from each other as possible. Next,
for each candidate, we identify its 50 nearest neighbors using
all instances (positive and negative). Out of all candidates, we
select the 3 instances that have the largest ratio of instances
from positive bags to instances from negative bags. The scales
of each target concept are initialized as the inverse of the
standard deviation of all instances identified as its nearest
neighbors.

In figure 4, we display a scatter plot of the features of all
instances of all bags. Here, for the purpose of visualization,
we project the 70-dim data to its 2 principal components. In
this figure, we also display the initial centers of the 3 target
concepts and the final centers after convergence. We also show
the path of each center as the FCMI iterates. For this data, we
fix the fuzzifier m to 1.5 and for each iteration, we run the line
search (to update the centers and scales) for 5 iterations. First,
we note that some features from instances of positive bags
are clustered away (top left of figure) from negative instances
(on the right side). Typically, these correspond to instances
extracted from the “correct” depth. Other instances, on the
other hand, are located around instances from negative bags.
These correspond to instances extracted from the background
part of the positive bags. Second, we note that the 3 centers
converged to dense red regions (instances from positive bags)
and away from dense blue regions (instances from negative
bags).

Fig. 4. Scatter plot of the 2 principal components of the instances feature
space. Instances of positive bags are displayes as red ’x’ and instances of
negative bags are displayed as blue ’o’. The location of initial (final) centers
is shown by circles (squares).

Recall that labels at the instance level are not available
and that positive bags include at least one positive instance.

After running FCMI, we use the following simple steps to
identify positive instances within positive bags. Assume that
bag Bn is assigned to target concept tk (i.e. ukn = maxuin
for i = 1, · · · ,K). The likelihood of each instance, bni, of
bag Bn in target concept tk can be computed using (11). The
most likely positive instance is the one that has the largest
likelihood (multiple positive instances could be identified using
a threshold). To verify that FCMI was able to identify the
relevant instances within positive bags, in figure 5, we display
few mine alarms where we highlight the window of the most
likely instance. As it can be seen, this window corresponds to
the strongest part of the mine signature.

Fig. 5. GPR signatures of three different alarms. Each alarm is represented
by a bag of 15 instances extracted at different depths. The most likely instance
of each bag is highlighted

To illustrate the need to identify multiple target concepts,
in figure 6, we display samples from the 3 target concepts
identified by FCMI. For each target concepts, we disply 3
typical instances. As it can be seen, target concept 1 corre-
sponds to mines with large and strong energy. Most of the
mines assigned to this concept are large and buried no more
than 3” deep. Target concept 2 corresponds to large mines with
weak energy. These are typically large mines buried deeper
than 3”. Target concept 3 corresponds to mines with narrower
signatures. These are typically mines of smaller sizes.

The proposed fuzzy approach has several advantages. First,
at the bag level, each bag Bn belongs to each target concept
tk with a fuzzy membership degree ukn. This is the stan-
dard advantage that fuzzy clustering methods have over crisp
clustering. Second, and more importantly, fuzzy memberships
can provide more detailed information at the instance level.
Specifically, a bag Bn can have a relatively high membership
in concept k1, uk1n, because one of its instances is close
to concept k1. Similarly, the same bag can have a non-zero
membership in another concept k2, uk2n, either because the
same instance is close to concept k2 or because a different
instance is close to concept k2. Distinction between these two
cases can provide a richer description of the data. In figure 7,
we illustrate these two scenarios. In figure 7(a), the bag has
0.68 membership in concept 2 (large mines with weak energy,
refer to figure 6(b) ) and 0.31 membership in concept 3 (small



(a) Sample instances from bags assigned to target concept 1

(b) Sample instances from bags assigned to target concept 2

(c) Sample instances from bags assigned to target concept 3

Fig. 6. Representative instances from the 3 target concepts identified by
FCMI.

mines with narrow signature, refer to figure 6(c) ). In this case,
the same instance has the highest likelihood in both concepts.
In figure 7(b), the bag has 0.57 membership in concept 1
(large mines with strong energy, refer to figure 6(a) ), 0.15
membership in concept 2, and 0.28 membership in concept 3.
In this case, different instances have the highest likelihood in
the 3 concepts. For instance, the shallower instance is similar
to concept 1 while the deeper instance is similar to concept 3.

V. CONCLUSIONS

We proposed an algorithm to identify multiple target con-
cepts for multiple instance data. First, we defined a fuzzy
Multi-target concept Diverse Density (MDD) metric. Then,
we derived the necessary conditions to optimize this MDD
and developed the Fuzzy Clustering of Multiple Instance data
algorithm. The FCMI algorithm identifies K target concepts
simultaneously. Each target concept correspond to a dense
region in the instances feature space with maximal correlation
to instances from positive samples and minimal correlation to
instances from negative samples.

Using data of buried landmines collected with a ground
penetrating radar sensor, we showed that the proposed FCMI

(a) an alarm that has 0.68 fuzzy membership in concept 2
(left) and 0.31 membership in concept 3 (right). The instances
with the highest likelihood are extracted from the same depth
location.

(b) an alarm that has 0.57 fuzzy membership in concept 1, 0.15
membership in concept 2, and 0.28 membership in concept
3. The instances with the highest likelihood and contributing
to the above memberships are extracted from different depth
locations.

Fig. 7. Sample alarms with high fuzzy memberships in more than one
concept.

algorithm can identify distinct target concepts that correspond
to mines of different types buried at different depths. Different
instances within a bag can be similar to only one target concept
or to multiple target concepts. Thus, the FCMI can be used to
provide rich description of the data at the instance level.

In this paper, we provided only qualitative evaluation of
the proposed FCMI. Quantitative evaluation would require
building an additional layer that performs classification. For
instance, the identified target concepts could be used to map
the multiple instance data as in [12]. We are investigating



this research direction. Another research direction that we are
currently investigating is the development of a possibilistic [23]
version of FCMI. Since multiple instance data can have a large
number of negative bags and even positive bags can have a
large number of irrelevant instances, a possibilistic version of
FCMI can make it more robust.
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